PREDICTION OF DEPTH OF NITRIDE LAYER IN IRON DURING GAS NITRIDING USING NEURAL NETWORK

Authors

  • Jan Setiawan Electrical Engineering, Pamulang University

DOI:

https://doi.org/10.46984/sebatik.v27i2.2395

Keywords:

Gas Nitriding, Eutectoid Temperature, Diffusion, Backpropagation, Neural Network.

Abstract

Surface engineering of materials can add economic value to the material. Gas nitriding in iron is a typical thermochemical surface engineering process at eutectoid temperatures, where nitrogen diffuses to the surface to form nitride layers in the form of gamma phase and epsilon phase. In this study, a computational approach will be taken to predict the formation of the nitriding layer. In the prediction, a backpropagation neural network is used with input parameters of temperature, nitriding potential and time with an output of nitriding layer depth. This prediction does not distinguish the phase formed in the nitriding layer. The best results were obtained in the model of single hidden layer with 5 neurons and two hidden layers with the formation starting with 6 neurons followed by 5 neurons. The mean square error of the training data for the single hidden layer is 0.0027. While for two hidden layers the value is higher at 0.0032. The results obtained for the absolute mean error and root mean square values for the single hidden layer model are 0.6117 and 0.9670. For the two hidden layers model, the absolute error and root mean square values are 0.5894 and 1.0472. It can be seen from the correlation coefficient that both models can only predict well at depths of more than 10 μm.

References

Al-Jarrah, R., & Al-Oqla, F. M. (2022). A novel integrated BPNN/SNN artificial neural network for predicting the mechanical performance of green fibers for better composite manufacturing. Composite Structures, 289, 115475. https://doi.org/10.1016/j.compstruct.2022.115475

Berladir, K., Hovorun, T., Ivanov, V., Vukelic, D., & Pavlenko, I. (2023). Diffusion Nitride Coatings for Heat-Resistant Steels. Materials, 16(21), 6877. https://doi.org/10.3390/ma16216877

Caballero (Ed.). (2021). Encyclopedia of Materials. Elsevier.

Daru, A. F., Hanif, M. B., & Widodo, E. (2021). Improving Neural Network Performance with Feature Selection Using Pearson Correlation Method for Diabetes Disease Detection. JUITA: Jurnal Informatika, 9(1), 123. https://doi.org/10.30595/juita.v9i1.9941

Funch, C. V., Christiansen, T. L., & Somers, M. A. (2022). Gaseous nitriding of additively manufactured maraging steel; nitriding kinetics and microstructure evolution. Surface and Coatings Technology, 432, 128055. https://doi.org/10.1016/j.surfcoat.2021.128055

Huang, N., Wang, Y., Zhang, Y., Liu, L., Yuan, N., & Ding, J. (2023). Multifunctional coating on magnesium alloy: Superhydrophobic, self-healing, anti-corrosion and wear-resistant. Surface and Coatings Technology, 463, 129539. https://doi.org/10.1016/j.surfcoat.2023.129539

Kassaymeh, S., Abdullah, S., Alweshah, M., & Hammouri, A. I. (2021). A Hybrid Salp Swarm Algorithm with Artificial Neural Network Model for Predicting the Team Size Required for Software Testing Phase. In 2021 International Conference on Electrical Engineering and Informatics (ICEEI). https://doi.org/10.1109/iceei52609.2021.9611128

Kassaymeh, S., Al-Laham, M., Al-Betar, M. A., Alweshah, M., Abdullah, S., & Makhadmeh, S. N. (2022). Backpropagation Neural Network optimization and software defect estimation modelling using a hybrid Salp Swarm optimizer-based Simulated Annealing Algorithm. Knowledge-Based Systems, 244, 108511. https://doi.org/10.1016/j.knosys.2022.108511

Korecka, E.W., Michalski, J., & Januszewicz, B. (2023). The Stability of the Layer Nitrided in Low-Pressure Nitriding Process. Coatings, 13(2), 257. https://doi.org/10.3390/coatings13020257

Kuang, F., Long, Z., Kuang, D., Liu, X., & Guo, R. (2022). Application of back propagation neural network to the modeling of slump and compressive strength of composite geopolymers. Computational Materials Science, 206, 111241. doi: https://doi.org/10.1016/j.commatsci.2022.111241

Lai, C.-Y., Santos, S., & Chiesa, M. (2019). Machine learning assisted quantification of graphitic surfaces exposure to defined environments. Applied Physics Letters, 114(24). https://doi.org/10.1063/1.5095704

Li, H., Ai, Z., Yang, L., Zhang, W., Yang, Z., Peng, H., & Leng, L. (2023). Machine learning assisted predicting and engineering specific surface area and total pore volume of biochar. Bioresource Technology, 369, 128417. https://doi.org/10.1016/j.biortech.2022.128417

Ramezani, M., Mohd Ripin, Z., Pasang, T., & Jiang, C. P. (2023). Surface Engineering of Metals: Techniques, Characterizations and Applications. Metals, 13(7), 1299. https://doi.org/10.3390/met13071299

Rashid, J., Nisar, M. W., Mahmood, T., Rehman, A., & Arafat, S. Y. (2020). Study of software development cost estimation techniques and models. Mehran University Research Journal of Engineering & Technology, 39(2), 413-431.

Setiawan, J., Riyanto, S., & Banawa, S. G. (2021). Characteristics of surface roughness and microhardness of nitrided pure iron. FLYWHEEL: Jurnal Teknik Mesin Untirta, 7(1), 7-11. doi: http://dx.doi.org/10.36055/fwl.v0i0.10198

Sun, J., Mei, L., Li, Y., Lei, Y., Du, X., & Wu, Y. (2019). Two‐Step Nitriding Behavior of Pure Iron with a Nanostructured Surface Layer. Advanced Engineering Materials, 21(10). https://doi.org/10.1002/adem.201900359

Varshini, A. G. P., Anitha Kumari, K., Janani, D., & Soundariya, S. (2021). Comparative analysis of Machine learning and Deep learning algorithms for Software Effort Estimation. Journal of Physics: Conference Series, 1767(1), 012019. https://doi.org/10.1088/1742-6596/1767/1/012019

Wang, Y., Wu, X., Li, X., Xie, Z., Liu, R., Liu, W., Zhang, Y., Xu, Y., & Liu, C. (2020). Prediction and Analysis of Tensile Properties of Austenitic Stainless Steel Using Artificial Neural Network. Metals, 10(2), 234. https://doi.org/10.3390/met10020234

Yanto, M., Sovia, R., & Melati, P. (2020). Analisis Forecasting Jumlah Kunjungan Tamu Hotel Di Kota Bukititinggi. Sebatik, 24(1), 8-13. Available at: https://jurnal.wicida.ac.id/index.php/sebatik/article/view/857

Zhang, Y., & Xu, X. (2020). Machine learning the magnetocaloric effect in manganites from lattice parameters. Applied Physics A, 126(5). https://doi.org/10.1007/s00339-020-03503-8

Zhou, Y., Xia, F., Xie, A., Peng, H., Wang, J., & Li, Z. (2023). A Review—Effect of Accelerating Methods on Gas Nitriding: Accelerating Mechanism, Nitriding Behavior, and Techno-Economic Analysis. Coatings, 13(11), 1846–1846. https://doi.org/10.3390/coatings13111846

Downloads

Published

2023-12-15

How to Cite

Setiawan, J. (2023) “PREDICTION OF DEPTH OF NITRIDE LAYER IN IRON DURING GAS NITRIDING USING NEURAL NETWORK”, Sebatik, 27(2), pp. 734–740. doi: 10.46984/sebatik.v27i2.2395.