• Jan Setiawan Electrical Engineering, Pamulang University



Gas Nitriding, Eutectoid Temperature, Diffusion, Backpropagation, Neural Network.


Surface engineering of materials can add economic value to the material. Gas nitriding in iron is a typical thermochemical surface engineering process at eutectoid temperatures, where nitrogen diffuses to the surface to form nitride layers in the form of gamma phase and epsilon phase. In this study, a computational approach will be taken to predict the formation of the nitriding layer. In the prediction, a backpropagation neural network is used with input parameters of temperature, nitriding potential and time with an output of nitriding layer depth. This prediction does not distinguish the phase formed in the nitriding layer. The best results were obtained in the model of single hidden layer with 5 neurons and two hidden layers with the formation starting with 6 neurons followed by 5 neurons. The mean square error of the training data for the single hidden layer is 0.0027. While for two hidden layers the value is higher at 0.0032. The results obtained for the absolute mean error and root mean square values for the single hidden layer model are 0.6117 and 0.9670. For the two hidden layers model, the absolute error and root mean square values are 0.5894 and 1.0472. It can be seen from the correlation coefficient that both models can only predict well at depths of more than 10 μm.


Al-Jarrah, R., & Al-Oqla, F. M. (2022). A novel integrated BPNN/SNN artificial neural network for predicting the mechanical performance of green fibers for better composite manufacturing. Composite Structures, 289, 115475.

Berladir, K., Hovorun, T., Ivanov, V., Vukelic, D., & Pavlenko, I. (2023). Diffusion Nitride Coatings for Heat-Resistant Steels. Materials, 16(21), 6877.

Caballero (Ed.). (2021). Encyclopedia of Materials. Elsevier.

Daru, A. F., Hanif, M. B., & Widodo, E. (2021). Improving Neural Network Performance with Feature Selection Using Pearson Correlation Method for Diabetes Disease Detection. JUITA: Jurnal Informatika, 9(1), 123.

Funch, C. V., Christiansen, T. L., & Somers, M. A. (2022). Gaseous nitriding of additively manufactured maraging steel; nitriding kinetics and microstructure evolution. Surface and Coatings Technology, 432, 128055.

Huang, N., Wang, Y., Zhang, Y., Liu, L., Yuan, N., & Ding, J. (2023). Multifunctional coating on magnesium alloy: Superhydrophobic, self-healing, anti-corrosion and wear-resistant. Surface and Coatings Technology, 463, 129539.

Kassaymeh, S., Abdullah, S., Alweshah, M., & Hammouri, A. I. (2021). A Hybrid Salp Swarm Algorithm with Artificial Neural Network Model for Predicting the Team Size Required for Software Testing Phase. In 2021 International Conference on Electrical Engineering and Informatics (ICEEI).

Kassaymeh, S., Al-Laham, M., Al-Betar, M. A., Alweshah, M., Abdullah, S., & Makhadmeh, S. N. (2022). Backpropagation Neural Network optimization and software defect estimation modelling using a hybrid Salp Swarm optimizer-based Simulated Annealing Algorithm. Knowledge-Based Systems, 244, 108511.

Korecka, E.W., Michalski, J., & Januszewicz, B. (2023). The Stability of the Layer Nitrided in Low-Pressure Nitriding Process. Coatings, 13(2), 257.

Kuang, F., Long, Z., Kuang, D., Liu, X., & Guo, R. (2022). Application of back propagation neural network to the modeling of slump and compressive strength of composite geopolymers. Computational Materials Science, 206, 111241. doi:

Lai, C.-Y., Santos, S., & Chiesa, M. (2019). Machine learning assisted quantification of graphitic surfaces exposure to defined environments. Applied Physics Letters, 114(24).

Li, H., Ai, Z., Yang, L., Zhang, W., Yang, Z., Peng, H., & Leng, L. (2023). Machine learning assisted predicting and engineering specific surface area and total pore volume of biochar. Bioresource Technology, 369, 128417.

Ramezani, M., Mohd Ripin, Z., Pasang, T., & Jiang, C. P. (2023). Surface Engineering of Metals: Techniques, Characterizations and Applications. Metals, 13(7), 1299.

Rashid, J., Nisar, M. W., Mahmood, T., Rehman, A., & Arafat, S. Y. (2020). Study of software development cost estimation techniques and models. Mehran University Research Journal of Engineering & Technology, 39(2), 413-431.

Setiawan, J., Riyanto, S., & Banawa, S. G. (2021). Characteristics of surface roughness and microhardness of nitrided pure iron. FLYWHEEL: Jurnal Teknik Mesin Untirta, 7(1), 7-11. doi:

Sun, J., Mei, L., Li, Y., Lei, Y., Du, X., & Wu, Y. (2019). Two‐Step Nitriding Behavior of Pure Iron with a Nanostructured Surface Layer. Advanced Engineering Materials, 21(10).

Varshini, A. G. P., Anitha Kumari, K., Janani, D., & Soundariya, S. (2021). Comparative analysis of Machine learning and Deep learning algorithms for Software Effort Estimation. Journal of Physics: Conference Series, 1767(1), 012019.

Wang, Y., Wu, X., Li, X., Xie, Z., Liu, R., Liu, W., Zhang, Y., Xu, Y., & Liu, C. (2020). Prediction and Analysis of Tensile Properties of Austenitic Stainless Steel Using Artificial Neural Network. Metals, 10(2), 234.

Yanto, M., Sovia, R., & Melati, P. (2020). Analisis Forecasting Jumlah Kunjungan Tamu Hotel Di Kota Bukititinggi. Sebatik, 24(1), 8-13. Available at:

Zhang, Y., & Xu, X. (2020). Machine learning the magnetocaloric effect in manganites from lattice parameters. Applied Physics A, 126(5).

Zhou, Y., Xia, F., Xie, A., Peng, H., Wang, J., & Li, Z. (2023). A Review—Effect of Accelerating Methods on Gas Nitriding: Accelerating Mechanism, Nitriding Behavior, and Techno-Economic Analysis. Coatings, 13(11), 1846–1846.




How to Cite

Setiawan, J. (2023) “PREDICTION OF DEPTH OF NITRIDE LAYER IN IRON DURING GAS NITRIDING USING NEURAL NETWORK”, Sebatik, 27(2), pp. 734–740. doi: 10.46984/sebatik.v27i2.2395.