Comparison of Yolov7 and Yolov8 Architectures for Detecting Shirt Collars
DOI:
https://doi.org/10.46984/sebatik.v28i2.2492Keywords:
Collar, Detection, Exam, Shirt, YOLOAbstract
The collar of the shirt is one of the primary aspects monitored during online examinations in the postgraduate program at Gunadarma University. Each examinee is required to wear formal, collared attire. Based on these regulations, a study is needed to develop a collar detection method to facilitate the online exam monitoring process. This research involves a comparative analysis between two detection architectures: You Only Look Once (YOLO) version 7 (YOLOv7) and version 8 (YOLOv8), to determine the most effective architecture for detecting shirt collars according to the dataset used in the study. The detection models developed from both architecture versions are implemented in a web-based application and tested to evaluate their accuracy and efficiency. Based on testing, YOLOv7 demonstrated an average accuracy of 95%, outperforming YOLOv8, which had an average accuracy of 75%. However, although YOLOv8's accuracy was lower than YOLOv7's, YOLOv8 excelled in detection speed, with an average time of 2.27 seconds, significantly faster than YOLOv7's average time of 22.42 seconds. Comparing accuracy and speed, YOLOv7 still shows the best performance in this study. However, it remains possible that YOLOv8 could surpass YOLOv7 in the future, especially if YOLOv8's detection accuracy can be significantly improved.
References
Arvio, Y., Kusuma, D. T., & Sangadji, I. B. M. (2024). PENDEKATAN ALGORITMA YOLO V5 UNTUK MENDETEKSI CACAT PRODUK MASKER. Jurnal Ilmiah Dinamika Rekayasa, 20(1), 11–17.
Atik, M. E., Duran, Z., & Özgünlük, R. (2022). Comparison of YOLO versions for object detection from aerial images. International Journal of Environment and Geoinformatics, 9(2), 87–93.
Fauzan, M. R., & Wibowo, A. P. W. (2021). Pendeteksian Plat Nomor Kendaraan Menggunakan Algoritma You Only Look Once V3 Dan Tesseract. Jurnal Ilmiah Teknologi Infomasi Terapan, 8(1), 57–62.
Hasan, R. H., Hassoo, R. M., & Aboud, I. S. (2023). Yolo Versions Architecture.
Hayati, N. J., Singasatia, D., & Muttaqin, M. R. (2023). Object Tracking Menggunakan Algoritma You Only Look Once (Yolo) V8 Untuk Menghitung Kendaraan. Komputa: Jurnal Ilmiah Komputer Dan Informatika, 12(2), 91–99.
Ibrahim, M., & Latifa, U. (2023). PENERAPAN ALGORITMA YOLOV8 DALAM DETEKSI WAKTU PANEN TANAMAN PAKCOY BERBASIS WEBSITE. JATI (Jurnal Mahasiswa Teknik Informatika), 7(4), 2489–2495.
Illmawati, R., & others. (2023). YOLO v5 untuk Deteksi Nomor Kendaraan di DKI Jakarta. Jurnal Ilmu Komputer Dan Agri-Informatika, 10(1).
Jannah, Z. S., & Sutanto, F. A. (2022). Implementasi Algoritma YOLO (You Only Look Once) Untuk Deteksi Rias Adat Nusantara. Jurnal Ilmiah Universitas Batanghari Jambi, 22(3), 1490–1495.
Marsil, M. A., & Caniago, D. P. (2024). Sistem Pencegahan Illegal Fishing di Laut Batam menggunakan YOLOv7 berbasis Notifikasi Telegram. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 12(1), 175.
Maulida, S., & others. (2023). Analisis Akurasi Pada Simbol Abjad Sistem Isyarat Bahasa Indonesia (SIBI) Menggunakan Metode CNN dan YOLO (You Only Look Once). UIN Ar-Raniry Banda Aceh.
Putro, E. C., Awangga, R. M., & Andarsyah, R. (2020). Tutorial Object Detection People With Faster region-Based Convolutional Neural Network (Faster R-CNN) (Vol. 1). Kreatif.
Sarosa, M., & Muna, N. (2021). Implementasi algoritma you only look once (YOLO) untuk deteksi korban bencana alam. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(4), 787–792.
Satya, L., Septian, M. R. D., Sarjono, M. W., Cahyanti, M., & Swedia, E. R. (2023). SISTEM PENDETEKSI PLAT NOMOR POLISI KENDARAAN DENGAN ARSITEKTUR YOLOV8. Sebatik, 27(2), 753–761.
Swedia, E. R., Fitriani, R. R., Cahyanti, M., & Septian, M. R. D. (2022). Feed Forward Neural Network untuk Prediksi Data: Implementasi dengan Pyhton dan Flask API pada Sistem Operasi Windows. https://books.google.co.id/books?id=NY2KEAAAQBAJ
Utami, G. C., Widiawati, C. R., & Subarkah, P. (2023). Detection of Indonesian Food to Estimate Nutritional Information Using YOLOv5. Teknika, 12(2), 158–165.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Margi Cahyanti, Ericks Rachmat Swedia, Mochammad Wisuda Sarjono
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain all their rights to the published works, such as (but not limited to) the following rights; Copyright and other proprietary rights relating to the article, such as patent rights, The right to use the substance of the article in own future works, including lectures and books, The right to reproduce the article for own purposes, The right to self-archive the article