Comparison of YOLOv7 and YOLOv8 Architectures for Detecting Shirt Collars

Authors

  • Calvin Danyalson Informatika, Universitas Gunadarma
  • Margi Cahyanti Sistem Informasi, Universitas Gunadarma
  • Ericks Rachmat Swedia Informatika, Universitas Gunadarma
  • Mochammad Wisuda Sarjono Informatika, Universitas Gunadarma

DOI:

https://doi.org/10.46984/sebatik.v28i2.2492

Keywords:

Collar, Detection, Exam, Shirt, YOLO

Abstract

The shirt collar is one of the primary aspects monitored during online examinations in the postgraduate program at Gunadarma University. Examinees are required to wear formal, collared attire. Based on these regulations, a study was conducted to develop a collar detection method to facilitate the online exam monitoring process. This research involves a comparative analysis of two detection architectures: You Only Look Once (YOLO) version 7 (YOLOv7) and version 8 (YOLOv8), to determine the most effective architecture for detecting shirt collars using the dataset provided in the study. Detection models developed from both architectures were implemented in a web-based application and tested to evaluate their accuracy and efficiency. The testing results showed that YOLOv7 achieved an average accuracy of 95%, outperforming YOLOv8, which had an average accuracy of 75%. However, despite YOLOv8's lower accuracy, it excelled in detection speed, with an average processing time of 2.27 seconds, significantly faster than YOLOv7's average processing time of 22.42 seconds. Considering both accuracy and speed, YOLOv7 demonstrated the best overall performance in this study. Nonetheless, it is possible that YOLOv8 could surpass YOLOv7 in the future if significant improvements are made to its detection accuracy.

References

Arvio, Y., Kusuma, D. T., & Sangadji, I. B. M. (2024). PENDEKATAN ALGORITMA YOLO V5 UNTUK MENDETEKSI CACAT PRODUK MASKER. Jurnal Ilmiah Dinamika Rekayasa, 20(1), 11–17.

Atik, M. E., Duran, Z., & Özgünlük, R. (2022). Comparison of YOLO versions for object detection from aerial images. International Journal of Environment and Geoinformatics, 9(2), 87–93.

Fauzan, M. R., & Wibowo, A. P. W. (2021). Pendeteksian Plat Nomor Kendaraan Menggunakan Algoritma You Only Look Once V3 Dan Tesseract. Jurnal Ilmiah Teknologi Infomasi Terapan, 8(1), 57–62.

Hasan, R. H., Hassoo, R. M., & Aboud, I. S. (2023). Yolo Versions Architecture.

Hayati, N. J., Singasatia, D., & Muttaqin, M. R. (2023). Object Tracking Menggunakan Algoritma You Only Look Once (Yolo) V8 Untuk Menghitung Kendaraan. Komputa: Jurnal Ilmiah Komputer Dan Informatika, 12(2), 91–99.

Ibrahim, M., & Latifa, U. (2023). PENERAPAN ALGORITMA YOLOV8 DALAM DETEKSI WAKTU PANEN TANAMAN PAKCOY BERBASIS WEBSITE. JATI (Jurnal Mahasiswa Teknik Informatika), 7(4), 2489–2495.

Illmawati, R., & others. (2023). YOLO v5 untuk Deteksi Nomor Kendaraan di DKI Jakarta. Jurnal Ilmu Komputer Dan Agri-Informatika, 10(1).

Jannah, Z. S., & Sutanto, F. A. (2022). Implementasi Algoritma YOLO (You Only Look Once) Untuk Deteksi Rias Adat Nusantara. Jurnal Ilmiah Universitas Batanghari Jambi, 22(3), 1490–1495.

Marsil, M. A., & Caniago, D. P. (2024). Sistem Pencegahan Illegal Fishing di Laut Batam menggunakan YOLOv7 berbasis Notifikasi Telegram. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 12(1), 175.

Maulida, S., & others. (2023). Analisis Akurasi Pada Simbol Abjad Sistem Isyarat Bahasa Indonesia (SIBI) Menggunakan Metode CNN dan YOLO (You Only Look Once). UIN Ar-Raniry Banda Aceh.

Putro, E. C., Awangga, R. M., & Andarsyah, R. (2020). Tutorial Object Detection People With Faster region-Based Convolutional Neural Network (Faster R-CNN) (Vol. 1). Kreatif.

Sarosa, M., & Muna, N. (2021). Implementasi algoritma you only look once (YOLO) untuk deteksi korban bencana alam. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(4), 787–792.

Satya, L., Septian, M. R. D., Sarjono, M. W., Cahyanti, M., & Swedia, E. R. (2023). SISTEM PENDETEKSI PLAT NOMOR POLISI KENDARAAN DENGAN ARSITEKTUR YOLOV8. Sebatik, 27(2), 753–761.

Swedia, E. R., Fitriani, R. R., Cahyanti, M., & Septian, M. R. D. (2022). Feed Forward Neural Network untuk Prediksi Data: Implementasi dengan Pyhton dan Flask API pada Sistem Operasi Windows. https://books.google.co.id/books?id=NY2KEAAAQBAJ

Utami, G. C., Widiawati, C. R., & Subarkah, P. (2023). Detection of Indonesian Food to Estimate Nutritional Information Using YOLOv5. Teknika, 12(2), 158–165.

Downloads

Published

2024-12-20

How to Cite

Danyalson, C., Cahyanti, M., Swedia, E. R. and Sarjono, M. W. (2024) “Comparison of YOLOv7 and YOLOv8 Architectures for Detecting Shirt Collars”, Sebatik, 28(2), pp. 372–379. doi: 10.46984/sebatik.v28i2.2492.