Implementation of Sparrow Pest Detection Using YOLOv8 Method on Raspberry Pi and Google Coral USB Accelerator
Keywords:
Sparrow pest, YOLOv8, Object detection, Raspberry Pi 4, Google Coral TPUAbstract
Sparrows are one of the most costly pests for farmers, as they can reduce rice yields by 50-60%. Traditional control methods, such as the use of scarecrows, windmills, and pesticides, are often ineffective or cause negative impacts on the environment, such as damage to ecosystems and human health. To overcome this problem, YOLOv8-based object detection technology offers a modern solution to automatically detect bird pests with a high level of accuracy. This research aims to implement the YOLOv8 model on power-efficient embedded devices, such as Raspberry Pi 4 and Google Coral USB TPU Accelerator, to support real-time sparrow detection at an affordable cost. The research was conducted through three main stages, namely collecting bird image datasets to support model training, training the YOLOv8n model to produce reliable bird pest detection, and implementing the model on embedded devices with and without TPU accelerators to evaluate detection performance. The evaluation results show that the YOLOv8 model has high performance with precision 0.91, recall 0.86, mAP50 0.92, and mAP50-95 0.59 after being trained for 300 epochs. Implementation on Raspberry Pi 4 without accelerator only resulted in an inference speed of 0.39 Frame Per Second, while with Google Coral USB TPU, the speed increased significantly to 7 Frame Per Second. This proves that TPU accelerators are highly effective in supporting real-time object detection. This technology is expected to help farmers protect crops efficiently, reduce losses due to pests, support sustainable agricultural productivity, and contribute to the overall improvement of food security.
References
Anandan, M., Manikandan, M., & Karthick, T. (2020). Advanced Indoor and Outdoor Navigation System for Blind People Using Raspberry-Pi. Journal of Internet Technology, 21(1), 183–195.
Benkirat, I. (2023). Design and implementation of a Real-Time Object Detection and Understanding System using Deep Neural Network to assist the visually impaired persons, running on Raspberry Pi. university of guelma.
Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., Modi, K., & Ghayvat, H. (2021). CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope. Electronics, 10(20), 2470. https://doi.org/10.3390/electronics10202470
Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. https://arxiv.org/abs/2004.10934
Dalal, N., & Triggs, B. (n.d.). Histograms of Oriented Gradients for Human Detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 886–893. https://doi.org/10.1109/CVPR.2005.177
Diwan, T., Anirudh, G., & Tembhurne, J. V. (2023). Object detection using YOLO: challenges, architectural successors, datasets and applications. Multimedia Tools and Applications, 82(6), 9243–9275. https://doi.org/10.1007/s11042-022-13644-y
Felzenszwalb, P. F., Girshick, R. B., & McAllester, D. (2010). Cascade object detection with deformable part models. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2241–2248. https://doi.org/10.1109/CVPR.2010.5539906
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 580–587. https://doi.org/10.1109/CVPR.2014.81
Hamakonda, U. A., Taus, I., Puspita, V. A., Lea, V. C., Bure, V., Soba, K., & Mamo, N. (2023). IDENTIFIKASI HAMA PADA TANAMAN PADI INPARI 30 (Oriza sativa L) DI DESA PAPE KECAMATAN BAJAWA KABUPATEN NGADA. Jurnal Pertanian Agros, 25(4), 3635–3639.
Jiang, Z., Zhao, L., Li, S., & Jia, Y. (2020). Real-time object detection method based on improved YOLOv4-tiny. https://arxiv.org/abs/2011.04244
Jolles, J. W. (2021). Broad‐scale applications of the Raspberry Pi: A review and guide for biologists. Methods in Ecology and Evolution, 12(9), 1562–1579. https://doi.org/10.1111/2041-210X.13652
Kahfiani, A. (2023). Jaring, Cara Jitu Kendalikan Hama Burung Pipit. 2(Vol. 2 No. 1 (2023): April 2023), 16–20. https://epublikasi.pertanian.go.id/berkala/btip/article/view/3487/3493
Karthi, M., Muthulakshmi, V., Priscilla, R., Praveen, P., & Vanisri, K. (2021). Evolution of YOLO-V5 Algorithm for Object Detection: Automated Detection of Library Books and Performace validation of Dataset. 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 1–6. https://doi.org/10.1109/ICSES52305.2021.9633834
Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie, W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., Wei, X., & Wei, X. (2022). YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. https://arxiv.org/abs/2209.02976
Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature Pyramid Networks for Object Detection. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 936–944. https://doi.org/10.1109/CVPR.2017.106
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector. In Computer Vision – ECCV 2016 (pp. 21–37). Springer International Publishing. https://doi.org/10.1007/978-3-319-46448-0_2
Nuraeni, I., Alfauzi, R. D., Sopyan, S., & Wahyudi, D. (2024). 33 Penggunaan Jaring Sebagai Pengendali Hama Burung Pipit (Estrildid Finches) pada Tanaman padi (Oryza Sativa L.) di Kampung Tinggarjaya Hilir Desa Cimaung. PROCEEDINGS UIN SUNAN GUNUNG DJATI BANDUNG, 4(9), 278–288.
Purkait, P., Zhao, C., & Zach, C. (2017). SPP-Net: Deep Absolute Pose Regression with Synthetic Views. https://arxiv.org/abs/1712.03452
Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. https://arxiv.org/abs/1804.02767
Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031
Sohan, M., Sai Ram, T., & Rami Reddy, Ch. V. (2024). A Review on YOLOv8 and Its Advancements (pp. 529–545). https://doi.org/10.1007/978-981-99-7962-2_39
Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. https://arxiv.org/abs/2207.02696
Wang, X., Shrivastava, A., & Gupta, A. (2017). A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection. https://arxiv.org/abs/1704.03414
Wang, Y.-Q. (2014). An Analysis of the Viola-Jones Face Detection Algorithm. Image Processing On Line, 4, 128–148. https://doi.org/10.5201/ipol.2014.104
Yenisbar, & Asmah, Y. (2021). Laporan Penelitian Stimulus Universitas Nasional : Beberapa Hama Tanaman Padi (Oryza sativa L.) di Desa Undrusbinangun, Kecamatan Kadudampit, Kabupaten Sukabumi, Jawa Barat. http://repository.unas.ac.id/4739/
Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2023). Object Detection in 20 Years: A Survey. Proceedings of the IEEE, 111(3), 257–276. https://doi.org/10.1109/JPROC.2023.3238524
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Bowo Nugroho, Nur Fajri Azhar, Boby Mugi Pratama , Ahmad Rusdianto Andarina Syakbani, Darrell Rajendra Wibowo, Andi Muhammad Agung Ramadhani Syam

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain all their rights to the published works, such as (but not limited to) the following rights; Copyright and other proprietary rights relating to the article, such as patent rights, The right to use the substance of the article in own future works, including lectures and books, The right to reproduce the article for own purposes, The right to self-archive the article