Music Genre Classification Based on Spectrogram Using CNN-MobileNet

Authors

  • Donatus Leo Informatika, Universitas Amikom
  • Alva Hendi Muhammad Informatika, Universitas Amikom

DOI:

https://doi.org/10.46984/sebatik.v29i2.2634

Keywords:

CNN, Deep Learning, MobileNet, Music Classification, Spectrogram

Abstract

Music is a universal form of art that has a significant impact on human life. In the digital era, managing increasingly large music collections requires an effective classification system to facilitate searching and storage. One of the growing methods is music genre classification, which helps organize music based on specific characteristics. This study explores the application of Convolutional Neural Network (CNN) and the MobileNet architecture for music genre classification based on spectrogram images. Spectrogram representation is used to convert audio signals into visual form, allowing the classification problem to be approached as an image classification task. The dataset used is GTZAN, consisting of six genres: blues, classical, country, hiphop, jazz, and metal. Image augmentation is applied to increase the diversity of training data, including rotation, translation, zooming, brightness adjustment, and horizontal flipping. The evaluation results show that the CNN-MobileNet model achieves an overall accuracy of 83%, with a macro precision of 85%, macro recall of 83%, and macro F1-score of 84%. The classical genre achieved the best performance with an F1-score of 93%. This research demonstrates that spectrogram-based music genre classification using CNN-MobileNet is an effective approach for automatic music recognition tasks

References

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00444-8

Andika Surya, I. M., Cahyanto, T. A., & Muharom, L. A. (2025). Deep Learning dengan Teknik Early Stopping untuk Mendeteksi Malware pada Perangkat IoT. Jurnal Teknologi Informasi Dan Ilmu Komputer, 12(1), 21–30. https://doi.org/10.25126/jtiik.2025128267

Andrew G. Howard, M. Z. B. C. D. K. W. W. T. W. M. A. H. A. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. Arxiv. https://doi.org/10.48550/arXiv.1704.04861

Ashraf, M., Abid, F., Din, I. U., Rasheed, J., Yesiltepe, M., Yeo, S. F., & Ersoy, M. T. (2023). A Hybrid CNN and RNN Variant Model for Music Classification. Mdpi, 13(3). https://doi.org/10.3390/app13031476

Asrafil, A., Paliwang, A., Ridwan, M., Septian, D., Cahyanti, M., Ericks, D., Swedia, R., & Informatika, J. T. (2020). KLASIFIKASI PENYAKIT TANAMAN APEL DARI CITRA DAUN DENGAN CONVOLUTIONAL NEURAL NETWORK. Sebatik. https://doi.org/10.46984/sebatik.v24i2.1060

Dutta, J., & Chanda, D. (2024). MUSIC EMOTION RECOGNITION AND CLASSIFICATION USING HYBRID CNN-LSTM DEEP NEURAL NETWORK. Bangladesh Journal of Multidisciplinary Scientific Research, 9(3), 21–32. https://doi.org/10.46281/bjmsr.v9i3.2230

Falola, P., Alabi, E., Folashade, O., & Fasae, O. D. (2022). MUSIC GENRE CLASSIFICATION USING MACHINE AND DEEP LEARNING TECHNIQUES: A REVIEW. Reserchjet. https://doi.org/10.17605/OSF.IO/FZQXW

Fardhani, S. M., Wihardi, Y., & Piantari, E. (2021). Klasifikasi Genre Musik Dengan Mel Frequency Cepstral Coefficient Dan Spektogram Menggunakan Convolutional Neural Network (Vol. 4, Issue 1). https://doi.org/https://doi.org/10.17509/jatikom.v4i1.41465

Khoirun Nisa’, N., & Riadi, A. A. (2025). Klasifikasi Wayang Kulit Kurawa Menggunakan Algoritma CNN Classification of Wayang Kulit Kurawa Using CNN Algorithm. Jurnal Pendidikan Dan Teknologi Indonesia (JPTI), 5(6), 1799–1808. https://doi.org/10.52436/1.jpti.856

Li, T. (2024). Optimizing the configuration of deep learning models for music genre classification. Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2024.e24892

Purnama, N. (2022). Music Genre Recommendations Based on Spectrogram Analysis Using Convolutional Neural Network Algorithm with RESNET-50 and VGG-16 Architecture. JISA. https://trilogi.ac.id/journal/ks/index.php/JISA/article/view/1270

Reza Fahcruroji, A., Yunita Wijaya, M., Fauziah, I., Sains dan Teknologi, F., Syarif Hidayatullah Jakarta Jl Ir Juanda No, U. H., Ciputat Tim, K., & Tangerang Selatan, K. (2024). IMPLEMENTASI ALGORITMA CNN MOBILENET UNTUK KLASIFIKASI GAMBAR SAMPAH DI BANK SAMPAH. Prosisko. https://doi.org/10.30656/prosisko.v11i1.8101

Sridhar, A. (2024). Attention-guided Spectrogram Sequence Modeling with CNNs for Music Genre Classification. Arxiv. http://arxiv.org/abs/2411.14474

Tzanetakis, G., & Cook, P. (2002). Musical genre classification of audio signals. IEEE Transactions on Speech and Audio Processing, 10(5), 293–302. https://doi.org/10.1109/TSA.2002.800560

Wairata, C. R., Swedia, E. R., & Cahyanti, M. (2021). PENGKLASIFIKASIAN GENRE MUSIK INDONESIA MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK. Sebatik, 25(1), 255–261. https://doi.org/10.46984/sebatik.v25i1.1286

Yehezkiel, S. Y., & Suyanto, Y. (2022). Music Genre Identification Using SVM and MFCC Feature Extraction. IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), 12(2), 115. https://doi.org/10.22146/ijeis.70898

Downloads

Published

2025-12-26

How to Cite

Leo, D. and Muhammad, A. H. (2025) “Music Genre Classification Based on Spectrogram Using CNN-MobileNet”, Sebatik, 29(2), pp. 467–475. doi: 10.46984/sebatik.v29i2.2634.