Deep Learning Architecture of VGG16 and VGG19 for Eyeglasses Face Classification

Authors

DOI:

https://doi.org/10.46984/sebatik.v29i2.2688

Keywords:

Convolutional Neural Network, Deep Learning, Face Classification, Glasses, TensorFlow Lite, VGG16, VGG19

Abstract

This study aims to conduct a comparative analysis of the performance of two popular Convolutional Neural Network (CNN) architectures, namely Visual Geometry Group (VGG16 and VGG19), in classifying facial images with glasses using the “Glasses or No Glasses” dataset. Both models were developed through a transfer learning approach by utilizing pre-trained ImageNet weights to accelerate convergence and improve classification accuracy. The training process employed the Adam optimizer with binary crossentropy as the loss function. The dataset was divided into two subsets 80% for training and 20% for validation while testing was performed on 50 unseen images excluded from both subsets. Experimental results show that the VGG16 architecture achieved 87.86% training accuracy and 89.11% validation accuracy, whereas VGG19 achieved 86.86% training accuracy and 87.89% validation accuracy. On the testing dataset, VGG16 correctly classified 47 out of 50 images (94%), while VGG19 correctly classified 48 images (96%). Although the performance gap is relatively small, VGG19 demonstrated better computational efficiency with a shorter training duration (2 hours and 41 minutes) compared to VGG16 (2 hours and 59 minutes). Furthermore, the trained models were successfully implemented in an Android application using TensorFlow Lite, enabling real-time eyeglasses detection. These findings indicate that the VGG19 architecture offers superior efficiency and accuracy for deep learning–based eyeglass face classification tasks.

References

Ahsan, M. M., Uddin, M. R., Farjana, M., Sakib, A. N., Momin, K. Al, & Luna, S. A. (2022). Image Data collection and implementation of deep learning-based model in detecting Monkeypox disease using modified VGG16. ArXiv Preprint ArXiv:2206.01862.

Anam, M. K., Defit, S., Haviluddin, H., Efrizoni, L., & Firdaus, M. B. (2024). Early stopping on CNN-LSTM development to improve classification performance. Journal of Applied Data Sciences, 5(3), 1175–1188.

Ariesanti Tri Handayani, S. M. K., Sutyawan, I. W. E., Suryaningrum, I. G. A. R., Alberta, I. B., Kresnan, I. G. N. A. W., & others. (2025). Buku Ajar Pemeriksaan Refraksi Mata. Greenbook Publisher.

Avuçlu, E. (2023). Classification of Pistachio Images Using VGG16 and VGG19 Deep Learning Models. International Scientific and Vocational Studies Journal, 7(2), 79–86.

Budi, E. S., Chan, A. N., Alda, P. P., & Idris, M. A. F. (2024). Optimasi Model Machine Learning untuk Klasifikasi dan Prediksi Citra Menggunakan Algoritma Convolutional Neural Network. Resolusi: Rekayasa Teknik Informatika Dan Informasi, 4(5), 502–509.

Cahyaningtyas, C., Kom, M., Mira, M., Gudiato, C., Kom, M., Sari, M., Kom, M., Noviyanti, P., & Kom, M. (2025). Computer Vision untuk Pemula: Deteksi dan Analisis Ekspresi Wajah dengan CNN. Uwais Inspirasi Indonesia.

David, R., Duke, J., Jain, A., Janapa Reddi, V., Jeffries, N., Li, J., Kreeger, N., Nappier, I., Natraj, M., Wang, T., & others. (2021). Tensorflow lite micro: Embedded machine learning for tinyml systems. Proceedings of Machine Learning and Systems, 3, 800–811.

ER, S., RR, F., M, C., Ernastuti, & MRD, S. (2022). Feed Forward Neural Network untuk Prediksi Data mplementasi dengan Python dan Flask API pada Sistem Operasi Windows (1st ed., Vols. 978-623-351-612–9). PT. Nas Media Indonesia.

Ghosh, J., & Gupta, S. (2023). ADAM optimizer and CATEGORICAL CROSSENTROPY loss function-based CNN method for diagnosing colorectal Cancer. 2023 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES), 470–474.

Heaton, J. (2020). Applications of deep neural networks. ArXiv Preprint ArXiv:2009.05673.

Heaton, J. (2021). Glasses or no glasses. Kaggle—T81-855: Applications of Deep Learning at Washington University in St. Louis.

Hindarto, D., Afarini, N., & ETE, H. (2023). Comparison efficacy of vgg16 and vgg19 insect classification models. JIKO (Jurnal Informatika Dan Komputer), 6(3), 189–195.

Kushariyadi, K., Apriyanto, H., Herdiana, Y., Asy’ari, F. H., Judijanto, L., Pasrun, Y. P., & Mardikawati, B. (2024). Artificial intelligence: Dinamika perkembangan AI beserta penerapannya. PT. Sonpedia Publishing Indonesia.

Leske, D. A., Hatt, S. R., Castañeda, Y. S., Wernimont, S. M., Liebermann, L., Cheng-Patel, C. S., Birch, E. E., & Holmes, J. M. (2020). Eye-related quality of life and functional vision in children wearing glasses. Journal of American Association for Pediatric Ophthalmology and Strabismus, 24(2), 91–e1.

Mascarenhas, S., & Agarwal, M. (2021). A comparison between VGG16, VGG19 and ResNet50 architecture frameworks for Image Classification. 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON), 1, 96–99.

Muraina, I. (2022). Ideal dataset splitting ratios in machine learning algorithms: general concerns for data scientists and data analysts. 7th International Mardin Artuklu Scientific Research Conference, 496–504.

Olii, L. H., Pasaribu, N. T. B., Hasugian, M. J., & Gany, A. (2023). Segmentasi dan Klasifikasi Sel pada Citra Histologi dengan Menggunakan Jaringan Konvolusional Encoder-Decoder. Seminar Nasional Teknik Elektro, 3(1).

Purba, M. (2025). Klasifikasi Jenis Daun Tanaman Tropis Menggunakan Model ResNet50 Berbasis Transfer Learning dengan Dataset Tropical Plant Leaf. JCOSIS (Journal Computer Science and Information Systems), 2(2), 51–57.

Raut, R., Pathak, P. D., Sakhare, S. R., & Patil, S. (2023). Generative adversarial networks and deep learning: theory and applications. CRC Press.

Reihardian, E. (2024). Klasifikasi Ekspresi Wajah Manusia Menggunakan Metode CNN Dengan Arsitektur Visual Geometry Group (VGG-Net). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 8(8).

Santo Dewatmoko, I., ST, M. M., Yani Sri Mulyani, M. M., Taufik Wibisono, S. T., & others. (2025). Digital Consumer Behavior: Strategi Pemasaran Berbasis Data dan Artificial Intelligence. Takaza Innovatix Labs.

Tammina, S., & others. (2019). Transfer learning using vgg-16 with deep convolutional neural network for classifying images. International Journal of Scientific and Research Publications (IJSRP), 9(10), 143–150.

Welp, A., Woodbury, R. B., McCoy, M. A., Teutsch, S. M., of Sciences Engineering, Medicine, on Public Health Approaches to Reduce Vision Impairment, C., Health, P. E., & others. (2016). Access to Clinical Vision Services: Workforce and Coverage. In Making Eye Health a Population Health Imperative: Vision for Tomorrow. National Academies Press (US).

Widyantoro, A. O. (2020). Outdoor Lighting For Cycling Photography. Achmad Oddy Widyantoro.

Wijaya, I. (2024). Sistem Implementasi Absensi menggunakan Face Recognition yang Terintegrasi Dengan Database. Politeknik Negeri Bali.

Downloads

Published

2025-12-26

How to Cite

Fatah, M. F. A., Swedia, E. R., Cahyanti, M. and Septian, M. R. D. (2025) “Deep Learning Architecture of VGG16 and VGG19 for Eyeglasses Face Classification”, Sebatik, 29(2), pp. 256–264. doi: 10.46984/sebatik.v29i2.2688.