Dynamical System Modeling of Dynastic Cycle with Optimal Control

Authors

  • Dhimas Mahardika Sains Data, Universitas An Nasher
  • Rizki Chika Audita Ariyani Sains Data, Universitas An Nasher
  • Uvi Dwian Kencono Sains Data, Universitas An Nasher
  • Lucky Cahya Wanditra Sains Data, Universitas An Nasher
  • Shafira Meiria Rahmasari Tadris Matematika, STAI Al Bahjah

DOI:

https://doi.org/10.46984/sebatik.v29i2.2692

Keywords:

Dynamical System, Optimal Control, Pontryagin Minimum Principle

Abstract

In ancient China there are three model of society which is farmers, bandits and ruler. When the authority (rulers) is not there, the dynamics system of farmers and bandits become predator-prey interactions system. In here rulers play role on taxing the farmers and catching the bandits and then punish them. Thus, farmers are a sort of renewable resource which is exploited both by bandits and by rulers. In this paper, optimal control is applied to reduce the bandit’s population, by reducing it, the ruler population can also be reduced because the existing bandits can be conquered, so that the cost of running a government is more efficient because it can reduce the need for eradicating bandits from ruler. The type of the optimal control here is fixed time and free end point.

References

Ahmad, N., Sutrisno, E., Sholikhah, F., & Rudiyanto, M. A. (2025). Strategi Efektif Dalam Penggunaan Model Biosistem: Menyusun Asumsi Dasar Untuk Keberlanjutan Lingkungan. Journal Scientific of Mandalika (JSM) e-ISSN 2745-5955| p-ISSN 2809-0543, 6(9), 3726–3738.

Downey, A. (2021). Physical Modeling with MATLAB: A Hands-On Guide to Computation and Simulation. No Starch Press.

Fitriyani, S. (2025). Matematika Dalam Kontrol Dan Sistem Teknik. Matematika Dalam Fisika Dan Teknik, 109.

Fortuna, L., Frasca, M., & Buscarino, A. (2021). Optimal And Robust Control: Advanced Topics With MATLAB®. CRC press.

Ir Hj Euis Dasipah, M. P., & Nataliningsih, I. H. (2024). Mengoptimalkan Hasil Pertanian: Teori Ekonomi dalam Produksi Pertanian. Mega Press Nusantara.

Karunia, R. (2024). Penerapan Kontrol Optimal pada Penyebaran Penyakit Leptospirosis Menggunakan Prinsip Minimum Pontryagin. Institut Teknologi Sepuluh Nopember.

Leondes, C. T. (2024). Structural Dynamic Systems Computational Techniques and Optimization: Techniques in Buildings and Bridges. Taylor & Francis.

Ma, Z., & Zou, S. (2021). Optimal Control Theory. Springer.

Purba, S. S. B. R. (2025). Evaluasi Stabilitas Harga Komoditas Pertanian dalam Sistem Ekonomi Terbuka. Circle Archive, 1(7).

Rahman, A. (2023). Politik Agraria. PT Salim Media Indonesia.

Rosenberg, N. A. (2021). Population Models, Mathematical Epidemiology, And The COVID-19 Pandemic. Theoretical Population Biology, 137, 1.

Saha, S., Sahoo, D., & Samanta, G. (2023). Dynamical Behaviour Of A Prey-Predator System In A Destructive Environment Incorporating Prey Refuge. Filomat, 37(22), 7505–7525.

Setiawan, Y., & Siddiq, N. K. (2025). Dampak Pajak (Upeti) Majapahit (Wilwatikta) Terhadap Peningkatan Ekonomi Pada Zaman Otonomi. Lex Prospicit, 1(1), 43–57.

Siregar, T. (2025). Matematika Sains Dan Teknologi (Saintek). Goresan Pena.

Sofyan, A., Budiawan, M. A., Wunarlan, I., Muhlis, L. O., Syafar, A. M., Agus, S., Amalia, A. I., & Dwiyanto, A. R. (2025). Matematika Teknik. MEGA PRESS NUSANTARA.

Tifaransyah, F., Safitri, A., Setyawan, P., Mustikasari, D. S., & Lejaringtyas, E. W. (2021). Kriminalitas di Jawa pada masa kolonial. Candra Sangkala, 3(2), 15–23.

Timur, A. (2020). Ekonomi Politik.

Umashankar, M. K. C., Mortuja, M. G., & Kumar, S. (2024). Dynamic analysis of an infected predator-prey system with prey herd behavior.

Wicaksono, D. A. (2023). Sejarah Asia Timur: Sejarah Tiongkok, Jepang, dan Korea dari abad pertengahan hingga era modern. Anak Hebat Indonesia.

Yulu, C. (2020). Reformasi Ekonomi Tiongkok & Kebangkitan Renminbi. Yayasan Pustaka Obor Indonesia.

Downloads

Published

2025-12-26

How to Cite

Mahardika, D., Ariyani, R. C. A., Kencono, U. D., Wanditra, L. C. and Rahmasari, S. M. (2025) “Dynamical System Modeling of Dynastic Cycle with Optimal Control”, Sebatik, 29(2), pp. 316–322. doi: 10.46984/sebatik.v29i2.2692.