Development of a Real-Time IoT-Based Monitoring System for 3-Phase Industrial Machines
DOI:
https://doi.org/10.46984/sebatik.v29i2.2709Keywords:
Real-Time Monitoring, Internet of Things, 3-Phase Industrial Machine, Digital Manufacturing, Condition MonitoringAbstract
This study addresses the urgent need for timely and accurate information regarding manufacturing resources by developing a cost-effective, real-time Internet of Things (IoT)-based monitoring system for 3-phase industrial machines, such as milling, turning, and grinding equipment. The primary objective is to enhance operational efficiency, minimize downtime, and support manufacturing digitalization. The methodology employed a mixed-methods approach and utilizes a hybrid microcontroller architecture, featuring low-cost SCT-013 current sensors and ZMPT-101B voltage sensors for data capture. An Arduino Mega performs high-speed data acquisition and complex measurement calculations, while an ESP32 module handles dedicated wireless communication and transmission. The system monitors crucial electrical parameters, including phase voltage, current, active and reactive power, and energy cost, while explicitly classifying the machine state (ON/OFF/STANDBY). A MySQL database ensures reliable data storage, and a Nextion display and web interface provide real-time visualization and user control. Rigorous quantitative testing validated the implementation: the fidelity of data transfer to the database was confirmed to be 100%. Sensor readings were successfully validated against a reference AC Clamp Meter. The system efficiently supports early anomaly detection using residual analysis. However, the end-to-end system latency was measured between 5 and 6 seconds consistently. This prototype delivers an effective and reliable solution for industrial online monitoring, providing a robust, data-driven foundation for future predictive maintenance and energy efficiency strategies
References
Aiman, M. A., Hussian, A. H., Ibrahim, M. T., & Pambudi, S. (2025). IoT implementation based on power quality network analyzer for 3-phase induction motor control. Teknika, 10(2), 46–56. https://doi.org/10.52561/teknika.v10i2.612
Arifianto, M. J. F., & Prasetyani, L. (2022). Sistem pemantauan dan kontrol energi listrik menggunakan platform Node-RED, Influxdb dan Grafana melalui jaringan WiFi dan Lora. Jurnal Fokus Elektroda, 7(1), 61–67. https://doi.org/10.33772/jfe.v7i1.23440
Azizi, A. (2023). Sistem monitoring daya listrik berbasis IoT dan aplikasi mobile untuk efisiensi energi. Jurnal Indonesia: Manajemen Informatika dan Komunikasi, 4(3), 1809–1814. https://doi.org/10.35870/jimik.v4i3.409
Bachri, A., Laksono, A. B., & Adams, B. (2025). Design and build an IoT-based 3-phase electric motor protection system. JEEMECS (Journal of Electrical Engineering, Mechatronic and Computer Science, 8(1), 1–16. https://doi.org/10.26905/jeemecs.v8i1.13666
Chanda, A., & Gudipalli, A. (2024). Current measurement and fault detection based on the non-invasive smart Internet of Things technique. Engineering Proceedings, 59(174), 1–10. https://doi.org/10.3390/engproc2023059174
Ciancetta, F., Fiorucci, E., Ometto, A., Fioravanti, A., Mari, S., & Segreto, M.-A. (2021). A low-cost IoT sensors network for monitoring three-phase induction motor mechanical power adopting an indirect measuring method. Sensors, 21(3), 754. https://doi.org/10.3390/s21030754
Dharmawan, A. D., Asmadi, & Raharjo, A. S. (2022). Implementasi sistem monitoring pada panel listrik. Elektriese: Jurnal Sains dan Teknologi Elektro, 12(2), 82–91. https://doi.org/10.47709/elektriese.v12i2.1685
Hadi, S., Anas, A. S., & Putra, L. G. R. (2022). Rancang bangun sistem monitoring penggunaan daya listrik berbasis Internet of Things. Circuit: Jurnal Ilmiah Pendidikan Teknik Elektro, 6(1), 54–67. https://doi.org/10.22373/crc.v6i1.10862
Hantoro, C. D. (2023). Monitoring and control 3-phase electric power using Internet of Things (IoT) based on Blynk application. Jurnal Penelitian dan Pengabdian Kepada Masyarakat UNIMED, 2(1), 159–167. https://doi.org/10.24018/ejece.2023.7.3.522
Hendrawati, D., Hakim, E. A., Dionova, B. W., Sulistyo, A. K., & Abdullah, M. I. (2025). IOT enabled real time load height monitoring and control system using PLC and HMI for smart industrial. Journal of Applied Engineering & Technological Science, 6(2), 1085–1100. https://doi.org/10.37385/jaets.v6i2.7044
Hermanto, & Agustini, A. A. (2022). Monitoring pemakaian arus listrik pada alat rumah tangga dengan menggunakan aplikasi Blynk berbasis Internet of Things. Media Informasi Analisa Dan Sistem (MEANS), 7(2), 161–168. https://doi.org/10.54367/means.v6i2.1576
Isanbaev, V., Baños, R., Martínez, F., Alcayde, A., & Gil, C. (2024). Monitoring energy and power quality of the loads in a microgrid laboratory using smart meters. Energies, 17(5), 1251. https://doi.org/10.3390/en17051251
Jokanan, J. W., Widodo, A., Kholis, N., & Mauboy, E. (2022). Rancang bangun alat monitoring daya listrik berbasis IoT menggunakan Firebase dan aplikasi Android. Jurnal Teknik Elektro, 11(1), 47–55. https://doi.org/10.26740/jte.v11n1.p47-55
Kotsilitis, S., Kalligeros, E., & Marcoulaki, E. C. (2024). A versatile low-cost monitoring device for high-frequency non-intrusive load monitoring in industrial and residential environments. Measurement: Sensors, 32, 101081. https://doi.org/10.1016/j.measen.2024.101081
Koyuncuoğlu, M. U. (2024). Most important performance evaluation methods of production lines: A comprehensive review on historical perspective and emerging trends. Computers & Industrial Engineering, 197, 110623. https://doi.org/10.1016/j.cie.2024.110623
Laksana, N., Madiun, M. B., & Susanto, R. (2024). Penerapan teknologi rumah pintar berbasis web menggunakan ESP32. Jurnal Pepadun, 5(2), 121–130. https://doi.org/10.23960/pepadun.v5i2.217
Noyjeen, A., & Noipitak, N. (2021). Monitoring parameters of three-phase induction motor using IoT technology for preventive maintenance. In 2021 International Electrical Engineering Congress (iEECON) (pp. 1–4). IEEE. https://doi.org/10.1109/iEECON52514.2021.9449033
Prasetyo, H., Sugiarto, Y., Raharja, A. B., Rachmawan, A. O., Mahadi, B. D., & Pratama, F. P. (2024). Design of IoT enabled three phase power quality monitoring unit based on EmonLibCM library. KONSTELASI: Konvergensi Teknologi dan Sistem Informasi, 4(2), 1–15. https://doi.org/10.24002/konstelasi.v4i2.10231
Rahman, F. F., Susanto, R., & Suryani, F. (2024). Implementasi smart energy meter dan controlling alat listrik pada rumah pintar berbasis IoT. JUPITER (Jurnal Pendidikan Teknik Elektro), 9(2), 64–74. https://doi.org/10.25273/jupiter.v9i2.20905
Reinard, V., Hugeng, H., & Utama, H. S. (2023). Perancangan sistem pemantauan sensor pada programmable logic controller mesin produksi berbasis Internet Of Things. Jurnal INTRO (Informatika dan Teknik Elektro), 2(2), 48–56. https://doi.org/10.51747/intro.v2i2.221
Sandira, A., Jufrizel, J., Maria, P. S., & Ullah, A. (2023). Alat monitoring dan notifikasi penggunaan daya listrik rumah tangga berbasis Internet Of Things menggunakan Blynk 2.0. Jurnal Komputer Terapan, 8(2), 408–420. https://doi.org/10.35143/jkt.v8i2.5761
Shadiq, J., & Mangani, S. A. (2021). Alat monitoring dan kontrol peralatan listrik pada ruangan berbasis Internet of Things. Informatics for Educators and Professionals, 6(1), 63–73. https://doi.org/10.51211/itbi.v6i1.1673
Siandiari, R. S., Candra, J. E., Munir, Z., & Burhan, R. M. (2024). Sistem monitoring daya listrik berbasis Internet of Things menggunakan aplikasi Blynk. Jurnal Quancom, 2(1), 30–34. https://doi.org/10.62375/jqc.v2i1.329
Singh, J., Singh, A., Singh, H., & Doyon-Poulin, P. (2025). Implementation and evaluation of a smart machine monitoring system under industry 4.0 concept. Journal of Industrial Information Integration, 43, 100746. https://doi.org/10.1016/j.jii.2024.100746
Soori, M., Arezoo, B., & Dastres, R. (2023). Internet of Things for smart factories in Industry 4.0, A review. Internet of Things and Cyber-Physical Systems, 3, 192–204. https://doi.org/10.1016/j.iotcps.2023.04.006
Varadharajan, S., Muthuramalingam, T., & Sundarraj, T. (2025). Cost-effective voltage and current sensor for IoT-based monitoring of agricultural motor loads. Computers and Electronics in Agriculture, 239, 111045. https://doi.org/10.1016/j.compag.2025.111045
Viciana, E., Arrabal-Campos, F. M., Alcayde, A., Baños, R., & Montoya, F. G. (2023). All-in-one three-phase smart meter and power quality analyzer with extended IoT capabilities. Measurement, 206, 112309. https://doi.org/10.1016/j.measurement.2022.112309
Xu, Y., Qamsane, Y., Puchala, S., Januszczak, A., Tilbury, D. M., & Barton, K. (2024). A data-driven approach toward a machine- and system-level performance monitoring digital twin for production lines. Computers in Industry, 157-158, 104086. https://doi.org/10.1016/j.compind.2024.104086
Zhang, F., Zhou, Z., & Chen, Y. (2024). Research on calibration method for measurement error of multiple rate carrier energy meter. Journal of Physics: Conference Series, 2815(1), 012032. https://doi.org/10.1088/1742-6596/2815/1/012032
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yohanes Sugiarto; Fenty Pandansari, Hilarius Prin Pujianto; Dionisius Alviano Yustama, Maria Mige Kusuma, Nemesio Tito Abi Darmawan, Nicholas Amon

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain all their rights to the published works, such as (but not limited to) the following rights; Copyright and other proprietary rights relating to the article, such as patent rights, The right to use the substance of the article in own future works, including lectures and books, The right to reproduce the article for own purposes, The right to self-archive the article






